

German-Vietnamese cooperative project on resource-efficient building using sustainable building materials

Bio-based materials tested in climatic conditions of Ho Chi Minh City: several results from REBUMAT project

BUI Q. Bao*, NGUYEN N. Tuan,
PHAN T. A. Vu, LE T. Song,
SCHWEDE Dirk, ZEGOWITZ Andreas, WANG Yuanchen

* Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

* E-mail: buiquocbao@tdtu.edu.vn

German-Vietnamese cooperative project on resource-efficient building using sustainable building materials

SUMMARY

1/ Introduction

2/ In-situ test-stand at TDTU campus

Materials investigated

3/ Results after 2 years in-situ

4/ Conclusion and perspectives

INTRODUCTION

Conventional materials:

- **□** Concrete:
 - Cement: CO₂ emission and high energy consumption
 - > Aggregates: sand, gravels

- > CO₂ emission
- > Agricultural soil

December 7, 1995

ii. December 24, 2013

Strategies adopted:

 Bio-based materials: Renewable, negative carbon footprint

2/ In-situ test-stand at TDTU campus

Exposed face: North

2.1/ Materials investigated

Wall section	1	2	3	4	5	6	7	8
main material	hollow clay brick	foam concrete brick	ACC brick	foam glass concrete brick	rammed earth	typha board wall	cement board	coconut coir bricks
width [m]	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Composition	 Internal paint Internal cement plaster 4 hollow clay bricks + cement mortar External cement plaster External Paint 	 Internal paint Internal cement plaster foam concrete brick + cement mortar External cement plaster External Paint 	 Internal paint Internal cement plaster ACC brick + glue External cement plaster External Paint 	 Internal paint Internal cement plaster foam glass concret e brick External cement plaster External Paint 	 Internal paint Internal cement plaster rammed earth External cement plaster External Paint 	 Internal paint Internal cement plaster Internal cement board typha board wall External cement board External cement plaster External paint 	 Internal paint Internal cement board External cement board External Paint 	 Internal paint Internal cement plaster coconut coir bricks External cement plaster External Paint

2.1/ Materials investigated

2.1/ Materials investigated

coconut
coir bricks

coconut coir bricks with cem-board

On the exterior face of the wall

Mid-thickness and interior face of the wall

For indoor ambient

For outdoor ambient

3/ Results after 2 years in-situ

Only some results presented here

Example: August 2023:

> Temperature: 27-35 °C

> RH: **60-90**%

Rammed earth wall

- $T_{\text{wall, external face}}$ (until 36 °C) > T_{air} => effects of the Sun radiation on the wall
- T in-wall, mid-thickness ~ T in-wall, internal face (29.5 34.5 °C)
- Temperature dephasing between outside and inside (about 4.5 h) => Inertia effect

Typha wall

- T_{wall, external face} (until 38.5 °C) > T_{air, outside} => effects of the Sun radiation on the wall
- T_{in-wall, mid-thickness} ~ T_{in-wall, internal face} (29 36 °C), BUT: difference at the "peaks" (about 0.5 °C) => effect of thermal insulation.
- T_{wall, external face} >> T_{wall, internal face} (about 2 °C) => effect of thermal insulation.
- Temperature dephasing between outside and inside (about 6 h) => Inertia effect

Coconut coir bricks

- T_{wall, external face} (until 36 °C) > T_{air, outside} => effects of the Sun radiation on the wall
- T_{in-wall, mid-thickness} ~ T_{in-wall, internal face} => no effect of thermal inertia.
- Temperature dephasing between outside and inside (about 1 h) => low inertia effect

- higher temperature on the external plaster of the Hollow clay brick wall (until 38 °C)
- Tin-wall, mid-thickness Tin-wall, internal face (28-36.5 °C).
- Temperature dephasing between outside and inside (about 5.5 h) => Inertia effect
- RH in-wall: 71-80%

Hollow clay brick wall

Hollow clay brick wall

Temperature dephasing and variation in the internal face

RH in-wall:

 Rammed earth: 88-90% (very low variation)

Typha: 75-80% (relatively high variation)

- Coconut coir brick: 72-79% (high variation)
- ⇒ absorption/desorption capacity of bio-based materials
- ⇒ "regulator" of indoor humidity

4. Conclusion and perspective

- Preliminary results obtained after 2 year in-situ,
- Typha: highest thermal inertia;
- Rammed earth: lowest temperature variation
- T_{in-wall, internal face, max}: Rammed earth (34.5 °C) < Typha~ Coconut coir (36 °C) < hollow clay brick wall (36.5 °C)
- Other scenarios (with air conditioning during the office hours, air conditioning all day) are being analysed,
- Numerical simulation for the hygro-thermal behaviour of the walls
- Comparison between different climatic conditions

THANK YOU FOR YOUR ATTENTION

* E-mail: buiquocbao@tdtu.edu.vn