German-Vietnamese cooperative project on resource-efficient building using sustainable building materials # Bio-based materials tested in climatic conditions of Ho Chi Minh City: several results from REBUMAT project BUI Q. Bao*, NGUYEN N. Tuan, PHAN T. A. Vu, LE T. Song, SCHWEDE Dirk, ZEGOWITZ Andreas, WANG Yuanchen * Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam * E-mail: buiquocbao@tdtu.edu.vn ## German-Vietnamese cooperative project on resource-efficient building using sustainable building materials #### **SUMMARY** 1/ Introduction 2/ In-situ test-stand at TDTU campus Materials investigated 3/ Results after 2 years in-situ 4/ Conclusion and perspectives #### INTRODUCTION #### **Conventional materials:** - **□** Concrete: - Cement: CO₂ emission and high energy consumption - > Aggregates: sand, gravels - > CO₂ emission - > Agricultural soil December 7, 1995 ii. December 24, 2013 #### **Strategies adopted:** Bio-based materials: Renewable, negative carbon footprint #### 2/ In-situ test-stand at TDTU campus **Exposed face: North** ## 2.1/ Materials investigated | Wall section | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |------------------|--|---|--|--|--|--|--|---| | main
material | hollow
clay
brick | foam
concrete
brick | ACC brick | foam
glass
concrete
brick | rammed
earth | typha
board
wall | cement
board | coconut
coir
bricks | | width [m] | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | | Composition | Internal paint Internal cement plaster 4 hollow clay bricks + cement mortar External cement plaster External Paint | Internal paint Internal cement plaster foam concrete brick + cement mortar External cement plaster External Paint | Internal paint Internal cement plaster ACC brick + glue External cement plaster External Paint | Internal paint Internal cement plaster foam glass concret e brick External cement plaster External Paint | Internal paint Internal cement plaster rammed earth External cement plaster External Paint | Internal paint Internal cement plaster Internal cement board typha board wall External cement board External cement plaster External paint | Internal paint Internal cement board External cement board External Paint | Internal paint Internal cement plaster coconut coir bricks External cement plaster External Paint | ## 2.1/ Materials investigated ## 2.1/ Materials investigated coconut coir bricks coconut coir bricks with cem-board On the exterior face of the wall Mid-thickness and interior face of the wall For indoor ambient For outdoor ambient #### 3/ Results after 2 years in-situ #### Only some results presented here Example: August 2023: > Temperature: 27-35 °C > RH: **60-90**% #### Rammed earth wall - $T_{\text{wall, external face}}$ (until 36 °C) > T_{air} => effects of the Sun radiation on the wall - T in-wall, mid-thickness ~ T in-wall, internal face (29.5 34.5 °C) - Temperature dephasing between outside and inside (about 4.5 h) => Inertia effect #### Typha wall - T_{wall, external face} (until 38.5 °C) > T_{air, outside} => effects of the Sun radiation on the wall - T_{in-wall, mid-thickness} ~ T_{in-wall, internal face} (29 36 °C), BUT: difference at the "peaks" (about 0.5 °C) => effect of thermal insulation. - T_{wall, external face} >> T_{wall, internal face} (about 2 °C) => effect of thermal insulation. - Temperature dephasing between outside and inside (about 6 h) => Inertia effect #### **Coconut coir bricks** - T_{wall, external face} (until 36 °C) > T_{air, outside} => effects of the Sun radiation on the wall - T_{in-wall, mid-thickness} ~ T_{in-wall, internal face} => no effect of thermal inertia. - Temperature dephasing between outside and inside (about 1 h) => low inertia effect - higher temperature on the external plaster of the Hollow clay brick wall (until 38 °C) - Tin-wall, mid-thickness Tin-wall, internal face (28-36.5 °C). - Temperature dephasing between outside and inside (about 5.5 h) => Inertia effect - RH in-wall: 71-80% #### Hollow clay brick wall #### Hollow clay brick wall #### Temperature dephasing and variation in the internal face #### RH in-wall: Rammed earth: 88-90% (very low variation) Typha: 75-80% (relatively high variation) - Coconut coir brick: 72-79% (high variation) - ⇒ absorption/desorption capacity of bio-based materials - ⇒ "regulator" of indoor humidity #### 4. Conclusion and perspective - Preliminary results obtained after 2 year in-situ, - Typha: highest thermal inertia; - Rammed earth: lowest temperature variation - T_{in-wall, internal face, max}: Rammed earth (34.5 °C) < Typha~ Coconut coir (36 °C) < hollow clay brick wall (36.5 °C) - Other scenarios (with air conditioning during the office hours, air conditioning all day) are being analysed, - Numerical simulation for the hygro-thermal behaviour of the walls - Comparison between different climatic conditions #### THANK YOU FOR YOUR ATTENTION * E-mail: buiquocbao@tdtu.edu.vn